扫码阅读
手机扫码阅读
如何评价LLM的好坏?一文汇总大语言模型评估数据集
98 2024-10-26
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。
文章来源:
AI生成未来
扫码关注公众号
本篇博客由APlayBoy撰写,AI生成未来编辑,详细探讨了大型语言模型(LLMs)的性能评估方法和所面临的挑战。文章强调了随着LLMs在不同领域的应用增多,其性能评估变得更为复杂。文章还介绍了用于评估LLMs的各种基准和数据集,并提供了数据集相关信息以及评估指标和资源链接。
1. 数据集应用的可视化
文章首先指出数据集的多样性对于评估LLMs至关重要,并提到了不同许可下的数据集应用。
2. 基础任务的数据集
介绍了适合评估LLMs基本能力的基准和数据集,例如Natural Questions、MMLU等,这些数据集涵盖了从语言建模到理解和生成的基础任务。
3. 新兴能力的数据集
文章接着重点介绍了评估LLMs新兴能力的基准和数据集,包括数学推理数据集GSM8K、常识推理数据集HellaSwag等。
4. 增强型能力的数据集
针对LLMs的增强能力,文章探讨了需要外部知识或工具的数据集,如HotpotQA、ToolQA等。
5. 数据集相关信息
文章提供了各数据集的基准名称、评估指标、排行榜链接、数据来源以及相关研究论文和代码的链接,方便读者获取更多信息。
结束语
最后,APlayBoy感谢读者的陪伴,并预告将继续整理与大语言模型相关的知识点。同时,文章鼓励读者加入AIGC技术交流群,以便在AI领域不断成长。
想要了解更多内容?
文章来源:
AI生成未来
扫码关注公众号
AI生成未来的其他文章
长视频生成速度提升100倍!新加坡国立提出Video-Infinity:分布式长视频生成
点击下方卡片,关注“AI生成未来”>>后台回复“
视频生成领域第一个World Model来了!WorldDreamer:视频生成任务的通用模型
关注【AI生成未来】公众号,回复“GAI”,免费获取??
一文详解3D内容生成算法(朴素/2D先验/混合型)
点击上方 蓝字,关注 AI 生成未来,干货不停后台??
视觉效果超赞!随意画个草图就能生成3D交互游戏场景!腾讯XR出品
点击下方卡片,关注“AI生成未来”>>后台回复“
一文详解大语言模型的流行架构与训练技术
点击下方卡片,关注“AI生成未来”>>关注【AI生
加入社区微信群
与行业大咖零距离交流学习
软件研发质量管理体系建设
白皮书上线