多仓库选址-MIP问题建模及求解
发布于 2024-10-27
1054
版权声明
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。
Python学习杂记
扫码关注公众号
扫码阅读
手机扫码阅读
物流公司在选址时面临着确定仓库位置及网点分配至哪个仓库的问题。文章通过建立混合整数规划模型(MIP),解决了一个包含15个配送网点和3个备选配送中心的离散选址问题,这种模型在多个领域都有广泛应用。
为了解决这个问题,文章使用了pulp库。在本例中,由于选址问题规模较小,不需要第三方求解器;但对于大规模问题,建议使用gurobi、cplex或scip等求解器。传入数据包括15个需配送的网点,3个备选配送选址点以及每个选址点到网点的运输成本和每个选址点的日均成本。
决策变量分为两类,第一类是3个0-1变量用于表示是否选择某个选址点,第二类是45个0-1变量用于表示网点被分配至哪个选址点。目标函数是最小化仓库成本与运输成本之和。约束条件包括每个网点仅被分配到一个选址点,至少选择一个仓库,以及仓库是否选择与网点分配之间的关联。
在模型求解后,可以打印出所选择的选址点,网点的分配情况以及总成本。这个模型可以扩展到包含更多网点和选址点的复杂问题,尽管模型会变得更加复杂,但建模逻辑保持不变,大规模问题的解决则依赖于高效的求解器或启发式算法。
Python学习杂记
Python学习杂记
扫码关注公众号
还在用多套工具管项目?
一个平台搞定产品、项目、质量与效能,告别整合之苦,实现全流程闭环。
查看方案
Python学习杂记的其他文章
Python可视化库Pyecharts使用介绍
Pyecharts是一个用于生成可视化图的Python库,它基于Echarts JavaScript库,提供
Python粒子群算法实现
粒子群算法把优化问题的初始解看作是空中觅食的鸟群,鸟群会往通过个体的飞行路径及群体交流,往食物多的地方飞行。
神经网络基础原理介绍
神经网络是近年来备受关注和研究的一个领域,尤其是深度神经网络的出现和发展。
国产AI新秀Kimi初体验
3月20日,一个名为Kimi的对话式AI助手成为市场焦点,相关概念股纷纷涨停,引发了投资者和自媒体的广泛关注。
Python常用内置函数使用介绍
Python 提供了许多内置函数,这些函数可以帮助我们更高效地编写代码。
加入社区微信群
与行业大咖零距离交流学习
PMO实践白皮书
白皮书上线
白皮书上线