Pyomo:强大的优化建模工具库
发布于 2024-10-27


版权声明
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
扫码阅读
手机扫码阅读
Pyomo优化建模工具概述
Pyomo是一个基于Python的优化建模工具,专注于构建和求解线性、非线性以及混合整数优化模型。它能够配合多种求解器,如GLPK、Cplex和Gurobi,来解决实际问题。本文将探讨Pyomo在不同领域,包括生产规划、供应链管理和能源系统分析等方面的应用。
应用案例:生产规划
以一个简单的生产规划问题为例,介绍Pyomo的应用。考虑一家工厂,生产两种产品,产品A和产品B。产品A的生产成本为3元、销售价值为6元,而产品B的生产成本为4元、销售价值为7元。工厂共有6台机器,每台机器每天工作8小时,工厂每天工作24小时。产品A每单位需1小时,产品B每单位需2小时生产时间。本案例旨在规划生产以最大化利润。
代码与结果
使用Pyomo定义模型对象和决策变量,通过设定目标函数和约束条件来形成优化模型。在这个案例中,目标函数为最大化利润,即销售价值减去生产成本。约束条件包括机器的工作时间限制。以下是Pyomo代码的简要展示:
from pyomo.environ import * # 创建模型对象 model = ConcreteModel() # 定义决策变量 model.x = Var(['A', 'B'], within=NonNegativeReals) # 定义目标函数 model.profit = Objective(expr=6*model.x['A'] + 7*model.x['B'] - 3*model.x['A'] - 4*model.x['B'], sense=maximize) # 定义约束条件 model.machine_constraint = Constraint(expr=1*model.x['A'] + 2*model.x['B'] <= 48)
通过设定的决策变量和约束条件,利用Pyomo可以求解出工厂的最优生产计划,从而实现利润最大化。
摘要结束。Python学习杂记


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
WPS AI试用(与GPT、Claude参照对比)
金山办公的WPS AI已经开放申请了,申请网站https://ai.wps.cn/。大概一到两天就可以申请成功。
Pandas新增一列的10种常用操作
pandas是一个用于数据处理和分析的Python库,它提供了丰富的功能来操作数据。
梯度下降基础原理及代码实现
在数学和机器学习领域,梯度是一个至关重要的概念,它描述了函数在某一点上的变化率和方向。
python可视化(一)
python可视化常用的包有pyecharts,plotly,matplotlib,seaborn等。
25个Python中极其有用的单行代码
Python是一种广泛使用的编程语言,其语法简洁明了,易于学习。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线