Python数据分析基础介绍
发布于 2024-10-28


版权声明
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
扫码阅读
手机扫码阅读
数据分析基础方法摘要
数据分析是一项从原始数据中提取有用信息的技术,Python通过其丰富的库和工具简化了这一过程。以下是一些基础的数据分析方法及其代码实现。
1. 描述性统计分析
描述性统计分析帮助理解数据集的基本特征,通过计算均值、中位数、标准差等统计量。使用Python的pandas库可以轻松计算这些描述性统计量。
import pandas as pd
data = {'age': [25, 30, 35, 40, 45], 'income': [50000, 60000, 70000, 80000, 90000]}
df = pd.DataFrame(data)
desc_stats = df.describe()
print(desc_stats)
2. 数据可视化
数据可视化通过图形方式展示数据,有助于发现数据中的模式、趋势和异常。可以使用matplotlib和seaborn库创建图表。
import matplotlib.pyplot as plt
import seaborn as sns
tips = sns.load_dataset("tips")
plt.figure(figsize=(10, 6))
sns.scatterplot(x="total_bill", y="tip", data=tips)
plt.title('Total Bill vs Tip')
plt.show()
3. 探索性数据分析
探索性数据分析(EDA)是在没有明确假设前提下,通过图表和统计方法来理解数据的过程。使用pandas来探查数据,并使用seaborn绘制箱线图观察数据分布。
iris = sns.load_dataset("iris")
print(iris.head())
print(iris.info())
print(iris.describe())
sns.boxplot(x='species', y='petal_length', data=iris)
plt.show()
4. 假设检验
假设检验是判断数据模式是由随机变异还是实际效应引起的统计过程。可以使用scipy库进行t检验。
from scipy import stats
group1 = [1,2,3,4,5,12,3,4,3,4,4,12,3,4,4]
group2 = [2,3,4,5,6,13,5,6,5,5,5,15,4,3,2]
t_stat, p_val = stats.ttest_ind(group1, group2)
print(f"t-statistic: {t_stat}, p-value: {p_val}")
这些基础方法是数据分析的起点,在实际应用中可能涉及更复杂的统计模型、机器学习算法和大数据技术,本文是一个介绍性的概要。
Python学习杂记


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
Python列表的灵活使用方法
在python中做数据分析、算法程序编写等,经常使用到列表,本文介绍一些列表常用的方法。
世界首位AI程序员爆火:Cognition公司的Devin
Devin是由Cognition 开发的全自主AI软件工程师,是世界上第一个能够独立完成项目从概念到完成的AI。
Flask编写API及调用
在工作当中,算法工程师经常需要快速编写一些演示demo,例如快速演示一些算法,或者需要编写数据标注的工具等。常见的实现方式是算法工程师用flask/django等框架编写API,再由前端工程师编写相关的网页或系统调用API。
Pycharm常用插件推荐
PyCharm是一种功能强大的Python集成开发环境(IDE),由JetBrains公司开发。
聚类方法介绍
聚类是一种无监督学习方法,它的目的是将数据集中的数据点划分为若干个相似的子集,称为聚类。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线