Python数据标准化预处理常用方法介绍
发布于 2024-10-28


版权声明
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
扫码阅读
手机扫码阅读
数据标准化在Python中是数据预处理的关键步骤,其通过将数据映射到同一尺度上,消除了量纲和数值范围的差异,以确保机器学习算法能够公平且准确地揭露数据中的模式和结构。这不仅有助于算法更好地理解数据,还能显著提高模型的训练效率和预测性能,是构建高效、可靠机器学习模型的重要环节。
标准化的原理
标准化通过数学变换调整数据的分布到预设的范围或形状。不同的标准化方法有不同的目的,包括消除量纲影响、数值范围调整和数据分布调整,以满足机器学习算法的需求。
标准化的目的
- 消除量纲影响:通过标准化将不同量纲的数值统一到相同尺度。
- 数值范围调整:调整数据至适合算法的数值范围,以提高稳定性和性能。
- 数据分布调整:将数据转换为近似正态分布,满足某些算法的假设。
常见的几种标准化
- Min-Max标准化:将数据线性转换到[0, 1]或[-1, 1]范围,但可能受异常值影响。
- Z-score标准化:数据转换为均值为0,标准差为1,消除量纲影响,不改变分布形状。
- 对数Log转化:处理偏态分布数据,将数据转换为对数形式。
代码示例
演示如何使用上述标准化方法:
- 导入必要的库,如
numpy
。 - 创建包含随机数据的NumPy数组。
- 定义并应用Min-Max标准化,将数据线性转换到指定范围。
- 定义并应用Z-score标准化,使数据均值为0,标准差为1。
- 定义并应用对数Log转化,将偏态分布数据转换为对数形式。
不同的标准化方法适用于不同场景,合适的方法能够提升模型性能和准确性。
Python学习杂记


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
Python中日期时间的操作处理
在Python编程语言中经常会遇到日期和时间之间的转换或者其他操作,datetime模块是一个用于处理日期和时间的工具库。
启发式算法、元启发式算法有什么区别?
启发式算法和元启发式算法都是用于解决优化问题的算法,本文介绍一下两者的区别。
json格式数据在Python中处理详解
概述Python的json模块是Python标准库的一部分,用于处理JSON格式的数据。
异步编程:提升效率的关键技术之一
异步编程是一种处理任务的方式,其中任务可以在后台进行而不会阻塞主线程。
使用贝叶斯优化方法求解非线性优化问题
贝叶斯优化是一种基于贝叶斯定理的优化方法,主要用于解决具有高计算成本、缺乏特殊结构、无法获取导数以及存在噪声的优化问题。贝叶斯优化通过采集函数在不同位置的数值,利用概率模型拟合这些数据,从而推断出函数的全局最优解。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线