CVPR`24 | 4D编辑哪家强?浙大首次提出通用指导4D编辑框架:Instruct 4D-to-4D

编辑 4D 本文 场景 视图
发布于 2025-05-17
554

我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。

扫码阅读
手机扫码阅读

文章主旨:

通过2D扩散模型实现4D场景的伪3D编辑,解决动态场景编辑中的时间与空间一致性问题。

关键要点:

  • 提出了Instruct 4D-to-4D框架,通过伪3D场景编辑实现4D场景的指导性编辑。
  • 增强了Instruct-Pix2Pix模型,引入了anchor感知注意力模块,支持批量处理与一致性编辑。
  • 结合光流引导的滑动窗口方法,确保时间一致性并提高编辑效率。
  • 采用迭代数据集生成与更新策略,显著提升编辑质量和收敛速度。
  • 实验验证表明该方法在多种任务中实现了高质量的4D场景编辑效果,优于基线方法。

内容结构:

1. 介绍

阐述了4D场景编辑的挑战与研究背景,强调传统方法在时间和空间一致性上的局限性,并引入了Instruct 4D-to-4D框架,以解决伪3D场景的编辑难题。

2. 方法

  • 伪3D编辑框架:将4D场景分解为伪3D子问题,分别处理时间一致性和伪视图编辑。
  • Anchor感知注意力模块:通过使用anchor帧参考图像,保证批次间编辑风格一致性。
  • 光流引导滑动窗口方法:利用光流预测,确保视频帧间的像素对应关系,实现逐帧编辑的时间传播。
  • 基于Warping的伪视图传播:采用空间和时间Warping技术,生成一致的编辑数据集,用于NeRF模型训练。
  • 迭代式pipeline:通过并行化和退火策略,优化编辑效率和结果收敛性。

3. 实验

  • 对单目和多摄像头动态场景进行编辑评估,展示了框架在细节和清晰度上的显著提升。
  • 与基线方法IN2N-4D进行定性和定量比较,验证了该方法的优越性。
  • 消融研究分析了关键模块的有效性,进一步确认设计选择的合理性。

4. 结论

总结了Instruct 4D-to-4D框架的创新点及其在高质量4D场景编辑中的突出表现,希望未来研究可以在此基础上进一步扩展。

文章总结:

Instruct 4D-to-4D框架提供了一种高效且创新的方式解决动态场景编辑复杂性,推动了4D场景编辑领域的发展。

AI生成未来

AIGC最新技术及资讯

323 篇文章
浏览 279.3K

还在用多套工具管项目?

一个平台搞定产品、项目、质量与效能,告别整合之苦,实现全流程闭环。

加入社区微信群
与行业大咖零距离交流学习
PMO实践白皮书
白皮书上线