Python统计分析常用的30个经典操作
发布于 2024-10-28


版权声明
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。


Python学习杂记
扫码关注公众号
扫码阅读
手机扫码阅读
Python数据统计分析操作摘要
本文概述了使用Python进行的30个数据统计分析操作,并提供了相应的代码实现。这些操作包括描述性统计、分布度量、相关性分析等。
描述性统计
- 创建一个列表,用于后续的统计分析。
- 计算平均值、最大值、最小值、中位数、众数、方差、标准差及极差。
- 计算分位数,包括第一、第三和第九十百分位数。
分布度量
- 评估数据的偏度和峰度。
- 使用Pearson方法计算相关系数。
- 计算协方差。
- 计算累积和、累积积、累积最大值、累积最小值、累积平均值、累积方差和累积标准差。
- 进行移动平均和指数加权移动平均(EWMA)计算。
- 计算Z分数、累积密度函数(CDF)、概率密度函数(PDF)、排序索引、逆序对数量、中位数绝对偏差(MAD)、二阶矩、信息熵。
相关性和趋势分析
- 计算列表的自动相关性。
- 生成Pearson相关系数矩阵。
- 使用Jackknife统计量。
- 计算元素频率和频率分布。
- 计算中位数绝对偏差比率。
- 检测列表中的线性趋势。
- 计算列表的三角矩(Trimmed Mean)。
上述操作通过提供的Python代码可以轻松实现,并可应用于实际数据分析任务。
Python学习杂记


Python学习杂记
扫码关注公众号
Python学习杂记的其他文章
数学建模基础介绍
数学建模,是一种使用数学语言描述现实世界问题的过程。
Python处理日期时间常用的10个操作
在处理数据时,我们经常需要处理时间数据。Python提供了丰富的库和函数来处理时间数据,本文将介绍一些常用的方法,并提供相应的代码示例供大家学习。
国产大模型海螺AI试用介绍
国内AI初创企业 MiniMax 稀宇科技推出 MoE 混合专家模型架构的abab6.5系列模型。
25个Python中极其有用的单行代码
Python是一种广泛使用的编程语言,其语法简洁明了,易于学习。
Python数据分析基础介绍
数据分析是一项涉及从原始数据中提取有用信息、洞察和结论的技术。python提供了大量的库和工具,使得进行数据分析变得相对简单。
加入社区微信群
与行业大咖零距离交流学习


PMO实践白皮书
白皮书上线
白皮书上线