机器学习-支持向量机基本原理介绍
发布于 2024-10-26
588
版权声明
我们非常重视原创文章,为尊重知识产权并避免潜在的版权问题,我们在此提供文章的摘要供您初步了解。如果您想要查阅更为详尽的内容,访问作者的公众号页面获取完整文章。
Python学习杂记
扫码关注公众号
扫码阅读
手机扫码阅读
支持向量机(SVM)概述
支持向量机(SVM)是一种流行的监督学习算法,主要用于分类和回归问题。它基于VC维和结构风险最小化原理,通过构建最优超平面以有效分类高维数据,并在小样本情况下保持良好的泛化能力。SVM解决了逻辑回归在分类边界选择上的局限,提供了一种更佳的分类方法。
核心原理
支持向量机的核心原理包括最大化分类间隔和使用核函数。它追求最大化不同类别数据点与决策边界的距离以提高泛化能力,并通过核函数将数据映射到高维空间解决非线性问题。常用核函数包括线性核、多项式核和径向基函数(RBF)。
基础案例
使用Python的sklearn库可以方便地实现SVM模型。通过生成样本数据,训练NuSVC模型,并利用matplotlib绘制决策函数和数据点的分布,可以直观地看到SVM的分类效果。
Python学习杂记
Python学习杂记
扫码关注公众号
还在用多套工具管项目?
一个平台搞定产品、项目、质量与效能,告别整合之苦,实现全流程闭环。
查看方案
Python学习杂记的其他文章
机器学习中的监督学习和无监督学习
机器学习是人工智能的一个分支,它使计算机能够从数据中学习并做出预测或决策。监督学习和无监督学习是机器学习的最常见的两种方法。
学习Python几个常用的网站
今天给大家总结学习Python的几个常用的网站。
OR-tools求解选址问题
选址问题是很多工厂、物流公司的核心研究问题。其目标是整个网络配送整体成本最低。本例使用Or-tools来解决选址问题。
精确算法基础介绍
精确算法在最优解保证的同时可能会牺牲一些计算效率,但在某些问题中,保证最优解是非常重要的。
Python书籍推荐
经常有小伙伴在微信后台询问关于学习Python的书籍推荐。为了满足大家的需求,本文将推荐几本不错的Python学习书籍。
加入社区微信群
与行业大咖零距离交流学习
PMO实践白皮书
白皮书上线
白皮书上线