扫码阅读
手机扫码阅读

AIGC|如何入门AI开发?从入门到强化全流程内容梳理

61 2024-02-01

本期摘要

在这个飞速发展的数字化时代,人工智能(AI)已经逐渐成为前沿技术的核心,引领着人类社会迈向新的历史阶段。

很多小伙伴都意识到了人工智能已然成为了下一个风口,那么如何入门AI开发也就成为了一个问题,本篇文章不说废话,直接为你送上AI开发从入门到进阶需要了解的内容。

01

为什么学习AI开发

人工智能(AI)已经成为当今科技发展的核心驱动力之一。随着数据的爆炸性增长和计算能力的提升,AI技术正在越来越广泛地应用于各个领域,包括医疗、金融、交通、教育等。因此,学习AI开发已经成为许多人的职业追求和兴趣所在。

02

基础篇:AI开发需要哪些基本知识

//1、编程语言

  • Python:因其简洁和丰富的库资源(如TensorFlow、PyTorch),Python成为AI开发的首选语言。

  • R、Java、C++ :R常用于统计分析和绘图;Java在企业级应用中受欢迎;C++用于高性能计算。

// 2、数学基础

  • 线性代数:矩阵运算、向量空间等是理解数据结构和算法的基础。

  • 概率论与统计学:用于数据分析和推断,帮助构建和优化模型。

  • 微积分:主要用于了解和构建优化算法,尤其是在深度学习中。

  • 凸函数优化: 研究定义于凸集中的凸函数最小化的问题。

  • 随机梯度下降算法:它的基本思想是通过不断调整模型参数,使得损失函数最小化

// 3、机器学习和深度学习框架

  • TensorFlow和PyTorch :两者都是开源框架,适用于构建和训练机器学习模型,尤其是在深度学习方面。

  • Scikit-learn和Keras :Scikit-learn适用于传统机器学习算法,Keras则是一个高级API,对初学者友好,易于上手。

// 4、数据处理技能

  • 数据预处理 :包括数据清洗、标准化、转换等,以确保数据质量。

  • 特征工程 :选择、优化和创造数据特征以提高模型性能。

  • Pandas、NumPy :这些Python库提供了数据操作和分析的强大工具。

03

强化篇:学习路线

// 1、Supervised Learning (监督学习)

Regression


Classification

  • Linear Model

  • Non-linear Model

  • Deep Learning

  • SVM

  • Decision Tree

  • KNN

Structured Learning

// 2、Semi-supervised Learning (半监督学习)

// 3、Transfer Learning (迁移学习)

// 4、Unsupervised Learning (无监督学习)

// 5、Reinforcement Learning (强化学习)

04

进阶篇:提升AI开发技能

// 1、实战项目

  • 通过实际项目学习:数据集、问题定义、模型选择、训练与优化;

  • 在线比赛平台,如Kaggle:锻炼实战技能

// 2、理解AI系统的架构

  • 从数据收集到模型部署的完整流程

  • 云平台与本地环境的选择

// 3、持续学习的资源

  • 在线课程:Coursera、Udacity、edX;

  • 书籍推荐:《深度学习》、《Python机器学习》

// 4、探索AI的前沿

  • 关注开源社区:如 transformers、langchain、GitHub Tending;

  • 关注期刊论文:如arxiv等

05

迈出AI学习的第一步

AI领域的学习是一个持续的过程。今天你所学的知识,将成为未来应对技术挑战的强大武器。所以,不要害怕起步的艰难,  每个AI的大师都是从初学者走起的。勇敢地迈出第一步,加入到这场智能科技的革命中来!

原文链接: http://mp.weixin.qq.com/s?__biz=Mzg5MzUyOTgwMQ==&mid=2247526849&idx=1&sn=f4b83f39c07b2b16d2ba2b5269a57ecd&chksm=c02f5267f758db7139bb21d069761b5b3572d807f382db7dd247ba71dde3da7ad44c82d744b5#rd